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ABSTRACT 

 
Automated expert systems provide a reliable and 
effective way to improve patient safety in a hospital 
environment.  Their ability to analyze large amounts 
of data without fatigue is a decided advantage over 
clinicians who perform the same tasks. As 
dependence on expert systems increase and the 
systems become more complex, it is important to 
closely monitor their performance.  Failure to 
generate alerts can jeopardize the health and safety 
of patients, while generating excessive false positives 
can cause valid alerts to be dismissed as noise. In 
this study, statistical process control charts were 
used to monitor an expert system, and the strengths 
and weaknesses of this technology are presented. 
 

INTRODUCTION 
 
The Medical Informatics Laboratory (MIL) at the 
Washington University School of Medicine (WUSM) 
and BJC HealthCare (BJC) has developed several 
expert systems.  As more of these systems come 
online, it is a challenge to monitor their performance. 
Finding an effective and efficient means to carry out 
this function is particularly important given the scope 
of the newer systems being developed.  Early expert 
systems developed by our group screened drug orders 
using only a few hundred rules.  Our newer pharmacy 
expert systems use thousands of drug rules, and 
manually monitoring the performance of each one 
would be essentially impossible.   
 
One solution to this problem is to use statistical 
process control (SPC) to automate monitoring of 
expert system performance. By using statistical 
analyses to monitor rules, attention can be focused on 
only those rules that exhibit significant changes in 
performance over time.  This approach can reduce the 
amount of manual energy that must be spent on 
performance monitoring.   
 
Originally developed for use in the manufacturing 
industry, the principles and techniques of SPC can 

easily be applied to expert systems.  SPC methods 
have also been advocated in healthcare for quality 
improvement1 and for healthcare epidemiology.2,3 
Our group has previously used control charts and 
other SPC tools for manually monitoring expert 
system performance and impact.4,5   
 

METHODS 
 
We selected our DoseChecker application to test 
whether SPC could be used to automate expert 
system monitoring.  DoseChecker was designed to 
screen drug orders for dosing errors that result from 
failing to adjust for renal function.6 Using patient-
specific information from pharmacy and laboratory 
systems, a creatinine clearance estimate is calculated 
and the ordered dose is compared to a set of 
allowable dose ranges.  If a dose violates one of the 
rules, a fax or page notifies the pharmacist 
responsible for the patient.  In addition to the order 
and patient information, the expert system also 
provides the pharmacist with a recommended dose 
appropriate for the patient’s age, weight, and renal 
function.     
 
After addressing an alert, the pharmacist uses a 
dynamic web interface to enter response information 
into a database, including whether or not the 
pharmacist and physician agreed with the alert.  This 
information is necessary to effectively monitor 
DoseChecker since there are valid clinical reasons 
why a patient can be given a drug dose that is outside 
of the recommended ranges.   
 
In evaluating strategies for automating DoseChecker 
monitoring, our team chose SPC methods as the most 
efficient and effective solution.  The principle tool of 
SPC is the control chart, which plots performance 
data over time along with calculated upper and lower 
control limits.   
 
The control limits define the variation that can be 
attributed to commo n causes, and in our case are set 
at three standard deviations (3σ) above and below the 



process average.  If a point falls outside the control 
limits or if other unexpected patterns occur in the 
data, a change has occurred that cannot be attributed 
to random fluctuations.  This is called special cause 
variation, and may indicate that a significant change 
or event has occurred in either the expert system or 
the clinical environment.     

 For this application, we employed a p-chart using 
three rules for signaling special cause variation7,8: 

1. A point above or below the calculated control 
limits. 

2. Eight points in a row above or below the process 
average. 

3. Any ten out of eleven points above or below the 
process average.   

 
Any single data point can satisfy the first rule.  The 
second and third rules both require a series of data 
points, which indicate a sustained change in the 
process.  When this occurs, the process average may 
be recalculated in order to evaluate future 
performance.     
 
Figure 1 is a sample control chart for a process that 
shows no special cause variation.  The centerline is 
the process average, while the dotted lines above and 
below are the control limits.  The control limits vary 
with each point on the chart, because they are 
dependent on the samp le size used to calculate the 
individual monthly rates.  The points connected by 
the solid black line represent the actual data used to 
calculate the other aspects of the control chart.  Each 
point represents a single month. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
For the initial trial, the following DoseChecker 
performance attributes were selected for monitoring:  

• Alert Rate 
• Pharmacist Agree Rate 
• Physician Agree Rate 
• Missing Outcome Response Rate 

 The Alert Rate is the number of alerts divided by the 
number of orders screened.  The Pharmacist Agree 
Rate is a subset of the alert rate and is calculated by 
dividing the number of alerts with which the 
pharmacist agreed by the number of alerts for which 
an outcome was entered.  The Physician Agree Rate 
is a smaller subset and is calculated by dividing the 
number of alerts with which the physician agreed by 
the number of alerts with which the pharmacist 
agreed.  If the pharmacist does not agree with an 
alert, a physician is not contacted.  Finally, the 
Missing Outcome Response Rate is the number of 
alerts for which no outcome was entered divided by 
the total number of alerts. 
 
To create the control charts, a monthly procedure was 
put in place to analyze the necessary information, 
using a standard statistical software package (SAS, 
Cary, NC).  The same process performs the 
calculations and generates the control charts, which 
are displayed via an existing intranet web application.  
To make problems easier to detect, control charts that 
show special cause variation trigger an SPC flag to 
appear on the website.  This flag is a small icon that 
appears next to the drug name and lets the user know 
when any of the three special cause rules have been 
satisfied.  The flags were the basis for our analysis, 
since they could be used to notify our maintenance 
team that a specific drug or drug rule should be 
investigated.    

 

 

 

 

 

 

 

 

 

Because of the statistical calculations involved in 
generating SPC charts, only drug rules with an 
average of twenty-five or more orders screened each 
month were evaluated.  Rules with very small sample 
sizes tend to have highly variable data, which makes 
the control limits on the SPC charts much less useful.  
Figure 2 shows a control chart for the 
Ticarcillin/Clavulanate Alert Rate at one BJC 
HealthCare facility.  With a twelve-month average of 
fewer than four orders per month, the result is a chart 
with control limits that range from zero to one 
hundred percent.     

    
             Figure 1:  Sample Alert Rate Chart   
               Without Special Cause Variation 

                            
      Figure 2: Ticarcillin/Clavulanate  Alert Rate 



 
RESULTS 

 
As of September 2002, automated SPC monitoring of 
DoseChecker was operational for all five of the BJC 
facilities where DoseChecker was deployed.  Our 
approach was to take problems that we found 
manually over the last year and determine whether a 
routine analysis of the SPC flags would have helped 
us discover them.  We accomplished this by 
examining control charts generated from historical 
data prior to September 2002.  During the course of 
our analysis, we were able to find several examples 
where control charts would have been very effective 
in identifying unusual behavior in the expert system.  
However, we were also able to identity a number of 
issues that would need to be addressed before such a 
system could be used to routinely automate 
performance monitoring.   
 
Figure 3 is one example of how SPC methods   can 
be used to detect a process that is out of statistical 
control.  In this case, a staffing change at one BJC 
facility in November 2001 prevented their pharmacy 
from effectively addressing DoseChecker alerts and 
entering response information.  This control chart for 
intravenous vancomycin was generated the month 
following the staffing change.  The Missing Outcome 
Response Rate increased to forty percent, which is 
nearly ten times the value of the upper control limit.  
This triggered an SPC flag that could have been used 
to alert the maintenance team of a potential problem. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Another example that illustrates how SPC can be 
used for monitoring an expert system occurred early 
in 2002, when policy changes at a BJC facility gave 
the pharmacists the authority to change certain drug 
orders in response to DoseChecker alerts.  Prior to 
this, the Pharmacist Agree Rate for intravenous 
vancomycin alerts was nearly zero.  Afterwards, the 
Agree Rate increased dramatically, as seen in Figure 
4.  This increase generated another SPC flag that 
would have notified the maintenance team.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
This control chart also shows the benefit of 
recalculating a shift in the process average.  After 
eight points were plotted that were above the 
previous average, a new average was calculated using 
the same eight points.  If the new process average 
were not calculated, the automated monitoring 
system would continue to generate SPC flags until 
the agree rate fell to its previous rate.  In this case, 
the policy change resulted in an improved process 
because pharmacis ts were agreeing with the alerts, so   
expecting the process to return to the previous state 
would not make sense.  Furthermore, by redefining 
the process average, an SPC flag would be generated 
if the agree rate decreased below its newly 
established baseline.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Finally, we saw that control charts can draw attention 
to overall trends at a facility.  Figure 5 shows the 
overall Alert Rate at a BJC facility as of January 
2003.  From March 2000 to March 2002, three 
different process average shifts occurred.  Each shift 
resulted in an SPC flag that could have called 
attention to the change in the alert rate.  After the 
facility implemented a policy change early in 2002, 
three points have been below the lower control limit, 
and eight in a row and ten out eleven have been 
below the mean.  All of these events result in SPC 
flags that indicate a statistically significant trend in 

        
        Figure 3: Missing Outcome Response Rate  

    
    Figure 4: Increase in Pharmacist Agree Rate as a      
                      Result of a Policy Change 

           
          Figure 5: Change in Overall Alert Rate 



response to the policy change.   
 

DISCUSSION 
 
The use of SPC tools to monitor and evaluate expert 
systems is not a new concept to our group.   We have 
used control charts to monitor nurse disagreement 
rates with our GermWatcher application, to help 
ensure that constant modifications to the system did 
not result in a deterioration in performance.4 We have 
also used SPC methods to show the impact of our 
PharmADE application in reducing the number of 
cisapride drug interactions at our pilot hospital.5   
 
What makes this project different from earlier work 
is the implementation of an automated system 
capable of monitoring a large rule set and notifying a 
maintenance team when a process showed significant 
variation from expected performance.  If successful, 
such an application could be scaled to handle even 
larger rule sets, resulting in increased efficiency and 
lower maintenance costs .  By focusing our study on 
events that we knew had impacted DoseChecker, we 
were able to provide evidence that such an automated 
monitoring system could be effective.  These events 
were all significant, and each could have dramatically 
affected the performance of DoseChecker if they had 
gone undetected.   
 
For example, the increase in the Missing Outcome 
Response Rate in November 2002 had important 
consequences, since an expert system is ineffective if 
alerts are not being addressed.  While such drastic 
occurrences are not common, this system could 
detect smaller changes that might occur if a 
pharmacist began entering less response information 
because of time constraints or other factors. 
  
The rising alert rate seen in Figure 5 is another 
example of an event that could cause problems if 
undetected.  Discovering a trend such as this is 
important because a high alert rate can have a 
negative affect on performance due to “alert 
fatigue.”9 Prior work suggests that a poor signal to 
noise ratio can greatly limit the utility of automated 
alerts.10 
 
Our automated monitoring system would have alerted 
the maintenance team to both of these problems, in 
addition to the positive Agree Rate change seen in 
Figure 4.  Although we were unable to find examples, 
SPC methods can also find potential problems with 
an expert system that might not be detected by 
manual review of raw data.  When data are highly 
variable, manually detecting statistically significant 
changes can be very difficult.  Using control charts 

allows problems to be detected before they reach a 
point at which they are obvious to both the users and 
the maintenance team.   
 
While our analysis illustrates the potential benefit of 
SPC monitoring, we also encountered several 
important implementation issues.  First, while control 
charts are very good at detecting special cause 
variation in a process, they do not provide insight 
into what caused the variation.  This is further 
complicated by the fact that the variation could 
represent a measurement problem, software 
performance issue, or an actual process change.   In 
order to effectively understand the variation, there 
must be well-established communication channels 
between the software development and maintenance 
teams and clinical user representatives.   
 
Another issue concerns when to recalculate the 
process average.  A major concern is that if care is 
not taken to understand the cause of the shift, an 
underlying problem can be hidden by the suppression 
of future alerts.  For example, if an alert rate rises in a 
sustained manner, it will eventually reach a point 
when a statistically significant shift occurs in the 
process mean.  At that point, future alerts will stop 
unless the rate continues to increase enough to either 
again recalculate the mean or the new control limits 
are exceeded.   
 
Analysis of the shift might show that new prescribing 
practices require a minor change in the expert system 
rule.  By making this change the alert rate would fall 
back to normal and the mean would eventually shift 
back down again.  However, if the analysis was not 
performed correctly, the lack of future alerts would 
make it appear as though the process were 
functioning optimally when it was not.  Therefore, 
we would suggest that the process average not be 
automatically recalculated for shifts that suggest 
degradation in process performance.  Instead, such 
shifts should serve as a signal to investigate the 
process. 
 
The sampling timeframe is another important issue to 
consider. With our current application   the control 
charts are calculated monthly, potentially limiting the 
timeliness of detecting important process changes.  
Ideally, data could be plotted more frequently so that 
problems can be resolved in a shorter amount of time.  
However, important factors that are relevant to the 
selection of the sampling timeframe include the 
frequency of events, resource constraints limiting the 
response to SPC signals, and clinical risk/benefit 
issues.   
 



Currently, the system is limited to those drugs rules 
that screen an average of twenty-five or more orders 
in a month.  The remaining drugs are not monitored 
at all.  This is because of problems encountered when 
working with a small sample size as illustrated in 
Figure 2. One possible solution would be to change 
the sampling frame such that each data point on the 
control chart represents a given number of orders 
screened rather than a period of time.  This would 
result in control charts being generated more often 
for high volume drugs, and less frequently for low 
volume drugs.   
 
A final limitation of our current application is that 
statistical analysis is not done on the number of 
orders screened each month.  For example, in August 
of 2002, one facility stopped using gatifloxacin 
because of a formulary change.  This is exactly the 
same situation that would have occurred had 
DoseChecker malfunctioned and stopped screening a 
particular drug.  Because the number of alerts fell in 
proportion to the number of orders screened, no 
significant change was seen in the Alert Rate or the 
other monitored statis tics.  This is relatively simple to 
correct in comparison to the previous issues 
discussed.   
 

CONCLUSIONS  

SPC Methodology is an efficient and effective means 
to automate the monitoring of expert system rule 
behavior and other process measures that are 
important for expert system performance.  
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